
ACAnon : Automatic Code Anonymization to Enable Code
Sharing

Aashish Karki
Amherst College

akarki15@amherst.edu

ABSTRACT
A developer might choose against sharing code on a devel-
oper help forum like StackOverflow because the code snippet
may contain a proprietary algorithm or her original idea.
I built and tested a code anonymization technique called
ACAnon, that finds an open-source code snippet similar to
the original one. The developer can then share the similar
code on the help forums.

1. RESEARCH PROBLEM
AND MOTIVATION

Developer help forums like StackOverflow1, CodeProject2,
and Google Groups3 are popular among software developers
for troubleshooting code. However, a developer may decide
against sharing a problematic code snippet because it
contains sensitive information. In the context of this paper,
sensitive information means method calls, literal values,
and method structures that may divulge details about
proprietary algorithms or an original idea.

Let us take an example of a hypothetical software developer
Mary. While working on her project, she gets stuck on
the method readFile() shown in Code 1. She gets a
FileNotFoundException on line 2. Her preferred option is
to share it on StackOverflow. Sharing the code, however,
gives away sensitive information like method and variable
names. One option could be manually replacing the sensitive
information with placeholders. In this paper, I refer to
this process of removing sensitive information as code
anonymization. Since manual code anonymization does not
guarantee that all sensitive information is replaced, she
decides against sharing the code altogether and ends up
spending hours debugging the code. It would be convenient
if she could automatically anonymize the code snippet and
post it on StackOverflow for quicker feedback.

1http://stackoverflow.com
2http://www.codeproject.com
3https://groups.google.com

Code 1 : Hypothetical code snippet containing
sensitive information

1 void readFile(String s) throws IOException{
2 BufferedReader bReader = new BufferedReader(new

FileReader(s));
3 String string;
4 while ((s=bReader.readLine())!=null){
5 System.out.println(s);
6 }
7 }

In this paper, I propose a novel way called ACAnon
(Automatic Code Anonymization) that replaces an original
code snippet with a similar open-source code snippet. It is,
however, difficult to unambiguously define similarity as it
may vary on a case-to-case basis. For code anonymization,
I define that two code snippets are similar if they have the
same Abstract Syntax Tree (AST) representation.

An AST maps Java source code to a tree format with
nodes as leaves of the tree [2]. Using AST as a basis of
comparison allows ACAnon to compare code snippets line
by line. ACAnon suggests the open-source4 code snippet,
Code 2 as a replacement to Mary’s code snippet depicted
in Code 1. Now, Mary can share Code 2 without worrying
about disclosing sensitive information.

Code 2 : Open-source code snippet similar to Code
1

1 static void copy(String filename, PrintStream out)
throws IOException {

2 BufferedReader br = new BufferedReader(new
FileReader(filename));

3 String s;
4 while ((s = br.readLine()) != null) {
5 out.println(s);
6 }
7 }

My contribution is an AST similarity-based technique,
ACAnon5, that automatically anonymizes a code snippet
by replacing it with a similar open-source one.

2. BACKGROUND AND RELATED WORK
ACAnon draws inspiration from previous works on code
obfuscation [3]. Code obfuscation changes a software’s
operation, data, organization, and flows while retaining

4http://tinyurl.com/ppgqlwy
5https://bitbucket.org/akarki15/projectchooser



computational performance and accuracy [3].

Ertaul and Venkatesh [1] implement several code-obfuscating
algorithms in JHide. JHide uses code-obfuscating algo-
rithms to increase the time and effort required to reverse
engineer a Java class file. The algorithms decrease the
class file’s human readability. On the other hand, ACAnon
anonymizes code without decreasing its human readability.
JHide processes Java class files while ACAnon processes
Java source files.

3. APPROACH AND UNIQUENESS
3.1 Implementation
ACAnon starts by downloading GitHub’s top 100 open
source Java projects. It then creates an AST for each
method body. Processing each method body is easier since
methods in Java are not nested and do not overlap. It
uses the method body’s AST to generate an Intermediate
Representation (IR) for that method body. I define the IR
for a method body as an in-order traversal of the method
body’s AST nodes. ACAnon uses these IRs to compare two
method bodies. Two method bodies are similar if their IRs
are exactly the same (both in size and order). ACAnon
creates a library of IRs for all the methods.

For example, Code 3 is a part of the IR generated for both
Code 1 and 2. ACAnon thus considers them to be similar.

Code 3 : Intermediate representation for Code 1
and Code 2

1 "Block;PrimitiveType;SimpleName;SingleVariableDeclaratio
2 n;"... ..."SimpleName;SimpleName;"

3.2 Analysis Technique
I analyzed the library of IRs to test the frequency of open-
source snippets suggested by ACAnon. To measure the
length of a method body, I used the number of AST nodes
in it as opposed to lines of code. Using the number of AST
nodes over lines of codes gives a better estimate because
it takes into account method bodies with long, one-line
statements and nested code-blocks. Accurate measurement
of method body length is important for analysis.

To measure how frequently ACAnon suggests an open-
source code snippet, I introduce the concept of a hit. A
method m is said to have a hit if there is another method
n that produces the same IR as produced by method m.
Using the IR library, I check whether each method in
the downloaded GitHub projects had a hit. I use this
information to calculate the percentage of hits (%hit) for
method bodies of various lengths.

4. RESULT AND CONCLUSION
Figure 1 plots the average %hit for a bucket. A bucket
numbered n contains method bodies whose sizes range from
10n− 9 to 10n AST nodes. For example, bucket 1 contains
method bodies whose sizes range from 1 to 10 AST nodes.

The result indicates that the average %hit for a bucket
decreases exponentially as methods in the bucket contains
more AST nodes. Shorter method bodies have a higher
%hit. For example, method bodies in Bucket 1 have a

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

1	
   10	
   100	
   1000	
  

A
ve
ra
ge
	
  p
er
ce
nt
ag
e	
  
of
	
  h
it
	
  o
f	
  a

	
  b
uc
ke
t	
  

Bucket	
  	
  	
  	
  
(On	
  log10	
  Scale)	
  

Bucket	
  1	
  

Bucket	
  2	
  

Bucket	
  3	
  

Bucket	
  4	
  

Figure 1: Bucket vs. Average percentage of hit of a bucket

high average %hit of 93.7%. This is expected because
this bucket mainly contains method bodies with empty
content (dummy methods), or simple one-line statements
like return _partial;, return _staticCtor != null;, or
super(name);.

As methods get longer and more complex, the average %hits
drastically decreases. For example, Bucket 2 on the graph
contains methods with 11 to 20 AST nodes, and has an
average %hit of 47.39%. This is because Bucket 2 contains
more varying types of method bodies than Bucket 1. Bucket
2 contains methods with simple multi-line statements as well
as methods with single complex statements meaning more
AST nodes like mActionBar.setNavigationMode(mode);, or
return extension.equals(what);.

Buckets 3 and 4 are two notable exceptions to the expo-
nential decrease in the graph. These exceptions are due to
entire method bodies being copied between projects. For
example, Bucket 4 contains only 3 methods, 2 of which were
duplicate methods from two different projects. Bucket 3 also
has several cases of cross-project duplication.

Analysis of open-source suggestions given by ACAnon shows
that as method bodies get longer, it is harder to find an
open-source substitute for them. To address this, future
works can relax the definition of similar code-snippets,
increasing %hits for method bodies of all lengths. Doing so
would help find open-source code snippets for long methods.

5. REFERENCES
[1] L. Ertaul, S. Venkatesh, JHide - A Tool Kit for Code

Obfuscation, IASTED Conf. on Software Engineering
and Applications, page 133-138. IASTED/ACTA Press,
2004

[2] Kuhn, Thomas, and Olivier Thomann, Abstract syntax
tree. Eclipse Corner Articles 20, 2006

[3] M. R Stytz, J. A Whittaker, Software Protection -
Security’s Last Stand, IEEE Security and Privacy,
January/February 2003


